The normalized Laplacian spectrum of <i>n</i>-polygon graphs and applications
نویسندگان
چکیده
Given an arbitrary connected graph G, the n-polygon τn(G) is obtained by adding a path with length n (n≥2) to each edge of and iterated graphs τng(G) (g≥0) are from iteration τng(G)=τn(τng−1(G)), initial condition τn0(G)=G. In this paper, method for calculating eigenvalues normalized Laplacian matrix presented if G first given. The spectra can also then be derived. Finally, as applications, we calculate multiplicative degree-Kirchhoff index, Kemeny's constant, number spanning trees exploring their connections spectrum, obtain exact results these quantities.
منابع مشابه
Normalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملnormalized laplacian spectrum of two new types of join graphs
let $g$ be a graph without an isolated vertex, the normalized laplacian matrix $tilde{mathcal{l}}(g)$is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$, where $mathcal{d}$ is a diagonal matrix whose entries are degree of vertices of $g$. the eigenvalues of$tilde{mathcal{l}}(g)$ are called as the normalized laplacian ...
متن کاملNormalized Tenacity and Normalized Toughness of Graphs
In this paper, we introduce the novel parameters indicating Normalized Tenacity ($T_N$) and Normalized Toughness ($t_N$) by a modification on existing Tenacity and Toughness parameters. Using these new parameters enables the graphs with different orders be comparable with each other regarding their vulnerabilities. These parameters are reviewed and discussed for some special graphs as well.
متن کاملThe (normalized) Laplacian Eigenvalue of Signed Graphs
Abstract. A signed graph Γ = (G, σ) consists of an unsigned graph G = (V, E) and a mapping σ : E → {+,−}. Let Γ be a connected signed graph and L(Γ),L(Γ) be its Laplacian matrix and normalized Laplacian matrix, respectively. Suppose μ1 ≥ · · · ≥ μn−1 ≥ μn ≥ 0 and λ1 ≥ · · · ≥ λn−1 ≥ λn ≥ 0 are the Laplacian eigenvalues and the normalized Laplacian eigenvalues of Γ, respectively. In this paper, ...
متن کاملLaplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear & Multilinear Algebra
سال: 2022
ISSN: ['0308-1087', '1026-7573', '1563-5139']
DOI: https://doi.org/10.1080/03081087.2022.2158293